Abstract
Thus far, multiple techniques for single cell analysis have been developed, yet we lack a relatively simple tool to assess DNA and RNA from the same cell at whole-transcriptome and whole-genome depths. Here we present an updated method for physical separation of cytoplasmic RNA from the nuclei, which allows for simultaneous studies of DNA and RNA from the same single cell. The method consists of three steps—(1) immobilization of a single cell on solid substrate, (2) hypotonic lysis of immobilized single cell, and (3) separation of cytosol containing aqueous phase and immobilized nucleus. We found that DNA and RNA extracted from single cell using our approach is suitable for downstream sequencing-based applications. We demonstrated that the coverage of transcriptome and genome sequencing data obtained after DNA/RNA separation is similar to that observed without separation. We also showed that the separation procedure does not create any noticeable bias in observed mutational load or mutation spectra. Thus, our method can serve as a tool for simultaneous complex analysis of the genome and transcriptome, providing necessary information on the relationship between somatic mutations and the regulation of gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.