Abstract

The activity and durability of chemical/electrochemical catalysts are significantly influenced by their surface environments, highlighting the importance of thoroughly examining the catalyst surface. Here, Cu-substituted La0.6Sr0.4Co0.2Fe0.8O3-δ is selected, a state-of-the-art material for oxygen reduction reaction (ORR), to explore the real-time evolution of surface morphology and chemistry under a reducing atmosphere at elevated temperatures. Remarkably, in a pioneering observation, it is discovered that the perovskite surface starts to amorphize at an unusually low temperature of approximately 100 °C and multicomponent metal nanocatalysts additionally form on the amorphous surface as the temperature raises to 400 °C. Moreover, this investigation into the stability of the resulting amorphous layer under oxidizing conditions reveals that the amorphous structure can withstand a high-temperature oxidizing atmosphere (≥650 °C) only when it has undergone sufficient reduction for an extended period. Therefore, the coexistence of the active nanocatalysts and defective amorphous surface leads to a nearly 100% enhancement in the electrode resistance for the ORR over 200 h without significant degradation. These observations provide a new catalytic design strategy for using redox-dynamic perovskite oxide host materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.