Abstract

The possibility of simultaneous particle aggregation and deposition in a porous medium was examined for the case of TiO(2) nanoparticles (NPs). While potential for particle aggregation is typically assumed to be negligible in porous media due to favored interactions with porous media surfaces (collectors), we show that nanoscale particle dimensions may favor aggregation kinetics, thus altering the transport and retention of these materials in saturated porous media. When surface chemistry favors nanoparticle-nanoparticle attachment (alpha(pp)) over nanoparticle-collector attachment (alpha(pc)), the rate of particle aggregation within pores may be comparable to that of deposition at ratios of collector to nanoparticle surface areas as high as 40. Aggregation of NPs in the porous media enhances NP deposition, however aggregates that are not removed will sample a smaller portion of the available pore network within the column due to size exclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.