Abstract

Myoelectric control of a prosthetic hand with more than one degree of freedom (DoF) is challenging, and clinically available techniques require a sequential actuation of the DoFs. Simultaneous and proportional control of multiple DoFs is possible with regression-based approaches allowing for fluent and natural movements. Conventionally, the regressor is calibrated in an open-loop with training based on recorded data and the performance is evaluated subsequently. For individuals with amputation or congenital limb-deficiency who need to (re)learn how to generate suitable muscle contractions, this open-loop process may not be effective. We present a closed-loop real-time learning scheme in which both the user and the machine learn simultaneously to follow a common target. Experiments with ten able-bodied individuals show that this co-adaptive closed-loop learning strategy leads to significant performance improvements compared to a conventional open-loop training paradigm. Importantly, co-adaptive learning allowed two individuals with congenital deficiencies to perform simultaneous 2-D proportional control at levels comparable to the able-bodied individuals, despite having to a learn completely new and unfamiliar mapping from muscle activity to movement trajectories. To our knowledge, this is the first study which investigates man-machine co-adaptation for regression-based myoelectric control. The proposed training strategy has the potential to improve myographic prosthetic control in clinically relevant settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.