Abstract

This research investigates the performance of Steel Fiber Reinforced Rubberized Concrete (SFRRC) that incorporates high volumes of End-of-life tire materials, (i.e., both rubber particles and recycled tire steel fibers) in strengthening existing reinforced concrete (RC) beams. The mechanical and durability properties were determined for an environmentally friendly SFRRC mixture that incorporates a large volume (60% by volume aggregate replacement) of rubber particles and is solely reinforced by recycled tire steel fibers. The material was assessed experimentally under flexural, compressive and impact loading, and thus results led to the development of a numerical model using the Finite Element Method. Furthermore, a numerical study on full-scale structural members was conducted, focusing on conventional RC beams strengthened with SFRRC layers. This research presents the first study where SFRRC is examined for structural strengthening of existing RC beams, aiming to enable the use of such novel materials in structural applications. The results were compared to respective results of beams strengthened with conventional RC layers. The study reveals that incorporation of End-of-life tire materials in concrete not only serves the purpose of recycling End-of-life tire products, but can also contribute to unique properties such as energy dissipation not attained by conventional concrete and therefore leading to superior performance as flexural strengthening material. It was found that by incorporating 60% by volume rubber particles in combination with recycled steel fibers, it increased the damping ratio of concrete by 75.4%. Furthermore, SFRRC was proven effective in enhancing the energy dissipation of existing structural members.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.