Abstract

Concrete surface crack detection is a critical research area for ensuring the safety of infrastructure, such as bridges, tunnels and nuclear power plants, and facilitating timely structural damage repair. Addressing issues in existing methods, such as high cost, lengthy processing times, low efficiency, poor effectiveness and difficulty in application on mobile terminals, this paper proposes an improved lightweight concrete surface crack detection algorithm, YOLOv8-Crack Detection (YOLOv8-CD), based on an improved YOLOv8. The algorithm integrates the strengths of visual attention networks (VANs) and Large Convolutional Attention (LCA) modules, introducing a Large Separable Kernel Attention (LSKA) module for extracting concrete surface crack and local feature information, adapted for features such as fracture susceptibility, large spans and slender shapes, thereby effectively emphasizing crack shapes. The Ghost module in the YOLOv8 backbone efficiently extracts essential information from original features at a minimal cost, enhancing feature extraction capability. Moreover, replacing the original convolution structure with GSConv in the neck network and employing the VoV-GSCSP module adapted for the YOLOv8 framework reduces floating-point operations during feature channel fusion, thereby lowering computational complexity whilst maintaining model accuracy. Experimental results on the RDD2022 and Wall Crack datasets demonstrate the improved algorithm increases in mAP50 by 15.2% and 12.3%, respectively, and in mAP50-95 by 22.7% and 17.2%, respectively, whilst achieving a reduced model computational load of only 7.9 × 109, a decrease of 3.6%. The algorithm achieves a detection speed of 88 FPS, enabling real-time and accurate detection of concrete surface crack targets. Comparison with other mainstream object detection algorithms validates the effectiveness and superiority of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.