Abstract

High-strength concrete (HSC) is defined as concrete that meets a special combination of uniformity and performance requirements, which cannot be attained routinely via traditional constituents and normal mixing, placing, and curing procedures. It is a complex material since modeling its behavior is a difficult task. This paper intends to show the feasible applicability of optimized convolutional neural networks (CNN) for predicting the slump in HSC. The following are the parameters that given as the input for the prediction of slump: cement (kg/m3), slag (kg/m3), fly ash (kg/m3), water (kg/m3), super-plasticizer (kg/m3), coarse aggregate (kg/m3), and fine aggregate (kg/m3). In order to make the prediction more accurate, the design of CNN is assisted with optimization logic by making some fine-tuned filter size of the convolutional layer. For this optimization purpose, this work presents a new "hybrid" algorithm that incorporates the concept of sea lion optimization algorithm (SLnO) and dragonfly algorithm (DA) and is named as Levy updated-sea lion optimization algorithm (LU-SLnO). Finally, the performance of the proposed work is compared and proved over the state-of-the-art models with respect to error measure and convergence analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.