Abstract

This paper presents an image-based crack detection system, in which its architecture is modified to use deep convolutional neural networks in a feature extraction step and other classifiers in the classification step. In the classification step, classifiers including Support Vector machines (SVMs), Random Forest (RF) and Evolutionary Artificial Neural Network (EANN) are used as an alternative to a Softmax classifier and the performance of these classifiers are studied. The data set was created from various types of concrete structures using a standard digital camera and an unmanned aerial vehicle (UAV). The collected images are used in the crack detection system and in creating a 3D model of a sample concrete building using an image- based 3D photogrammetry technique. Then, the 3D model is used to create a mosaic image, in which the crack detection system was applied to create a global view of a crack density map. The map is then projected onto the 3D model to allow cracks to be located in the 3D world. A comparative study was conducted on the proposed crack detection system and the results prove that the combined architecture of CNN as a feature extractor and SVM as a classifier shows the best performance with the accuracy of 92.80. The results also show that the modified architecture by integrating CNN and other types of classifiers can improve a system performance, which is better than using the Softmax classifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call