Abstract

We define a quasihomomorphism from braid groups to the concordance group of knots and examine its properties and consequences of its existence. In particular, we provide a relation between the stable four ball genus in the concordance group and the stable commutator length in braid groups, and produce examples of infinite families of concordance classes of knots with uniformly bounded four ball genus. We also provide applications to the geometry of the infinite braid group. In particular, we show that its commutator subgroup admits a stably unbounded conjugation invariant norm. This answers an open problem posed by Burago, Ivanov and Polterovich.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.