Abstract

Dopamine (DA) and acetylcholine (Ach) are released from the carotid body chemoreceptor cells under basal conditions and stimulation by hypoxia. The role of DA and Ach in the control of the carotid sinus nerve chemosensory discharge (CSND) are still under debate. Here we tested the hypothesis that DA is inhibitory to the CSND and the effect is reversed by Ach. The CSND was recorded in 2 groups of anesthetized and artificially ventilated adult cats. The treatment group received alpha-methyl-paratyrosine (250 mg/kg) and reserpine (5 mg/kg) administered intraperitoneally, respectively 2.5 h and 12 h prior to the experiment in order to minimize the contribution of endogenous DA. The control group was injected with normal saline. CSND and arterial blood pressure (ABP) were recorded 1) at baseline 2) with a continuous iv infusion of DA, 5 μg/kg/min and 3) with a continuous infusion of Ach (25 μg/kg/min), while DA infusion was ongoing. DA & Ach infusions were initiated in room air. At baseline and 10 min into each infusion, the FIO2 was switched from room air to 8% O2 in N2 for 2–3 min and then to 100% O2 for 2–3 min. One min into DA infusion, CSND was decreased from 3.1 ± 0.4–0.8 ± 0.4 imp/s (P < 0.01) in controls and from 3.2 ± 0.8–0.3 ± 0.2 (imp/s, P < 0.01) in the treatment group. Up to 10 min into DA infusion, the CSND was restored in controls but still significantly inhibited in treated cats in room air and hyperoxia. The mean ± SEM CSND (impulses/sec) and ABP (mmHg) at steady state are listed in Table ​Table11 overleaf. Compared with DA alone, DA+ACh appears to increase the CSND in control cats breathing room air as well as in treated cats breathing room air or 100% O2. Compared with DA, ABP was particularly depressed during DA+Ach in the treatment group breathing room air. The CSND in hypoxia was unchanged throughout the experiment. Table 1 It is concluded that endogenous DA regulates the basal CSND and Ach may be capable of restoring the activity previously inhibited by DA. The effect of Ach appears to be independent from ABP changes in room air for control cats and in hyperoxia for treated cats. In the experimental conditions, neither DA nor DA+Ach appear to modify the CSND response to hypoxia.

Highlights

  • To be effective, inspiratory muscles on the left and right sides must contract together

  • We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions

  • The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)

Read more

Summary

Introduction

Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.