Abstract
Background Soluble guanylate cyclase (sGC) stimulators demonstrate smooth muscle relaxation and vasodilation via the nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway. A novel class of sGC stimulators, the pyrazole-pyrimidines, was synthesized with the objective of creating a potent, once-a-day (QD) oral treatment for cardiovascular diseases. Several compounds from this class were identified as potent stimulators of sGC in vitro (EC50 = 40-287 nM). These compounds were evaluated in pharmacokinetic (PK) and blood pressure pharmacodynamics (PD) in vivo rat and dog models and were shown to exhibit sustained compound exposure (Thalf = >7 hours in preclinical species) after oral dosing, predicting QD dosing in humans. Further, they significantly decreased mean arterial blood pressure (MAP (≥ 10mmHg) after oral dosing. The potential for sGC stimulators to work in combination with reference antihypertensive therapies was assessed in an in vivo PD assay in a spontaneous hypertensive rat (SHR) model. Doses of losartan, atenolol, amlodipine, and our sGC stimulators that induced an effect (< 30mmHg) on MAP were chosen. IWP-121, a representative sGC stimulator, was shown to provide additional MAP lowering effects when combined with losartan, atenolol, or amlodipine, resulting in an increase in overall blood pressure effects between 5-50%. By linking compound concentration to blood pressure change for each compound alone and in combination, we were able to assess the PK/PD relationships for the individual and combined effects.
Highlights
Soluble guanylate cyclase stimulators demonstrate smooth muscle relaxation and vasodilation via the nitric oxide (NO)-sGC-cyclic guanosine monophosphate pathway
A novel class of sGC stimulators, the pyrazole-pyrimidines, was synthesized with the objective of creating a potent, once-a-day (QD) oral treatment for cardiovascular diseases. Several compounds from this class were identified as potent stimulators of sGC in vitro (EC50 = 40-287 nM). These compounds were evaluated in pharmacokinetic (PK) and blood pressure pharmacodynamics (PD) in vivo rat and dog models and were shown to exhibit sustained compound exposure (Thalf = >7 hours in preclinical species) after oral dosing, predicting QD dosing in humans
The potential for sGC stimulators to work in combination with reference antihypertensive therapies was assessed in an in vivo PD assay in a spontaneous hypertensive rat (SHR) model
Summary
Soluble guanylate cyclase (sGC) stimulators demonstrate smooth muscle relaxation and vasodilation via the nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway. Concomitant administration of sGC stimulators with common classes of anti-hypertensive agents results in increased efficacy in spontaneously hypertensive rats Peter Germano*, Jenny Tobin, Robert Jefferson, Courtney Shea, Adaline Smith, G-Yoon Jamie Im, James Sheppeck II, James Wakefield, Kristie Sykes, Maria Ribadeneira, Samuel Rivers, Jaime Masferrer
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.