Abstract
Due to independent and coarse quantization of transform coefficients in each block, block-based transform coding usually introduces visually annoying blocking artifacts at low bitrates, which greatly prevents further bit reduction. To alleviate the conflict between bit reduction and quality preservation, deblocking as a post-processing strategy is an attractive and promising solution without changing existing codec. In this paper, in order to reduce blocking artifacts and obtain high-quality image, image deblocking is formulated as an optimization problem within maximum a posteriori framework, and a novel algorithm for image deblocking using constrained non-convex low-rank model is proposed. The â„“(p) (0 < p < 1) penalty function is extended on singular values of a matrix to characterize low-rank prior model rather than the nuclear norm, while the quantization constraint is explicitly transformed into the feasible solution space to constrain the non-convex low-rank optimization. Moreover, a new quantization noise model is developed, and an alternatively minimizing strategy with adaptive parameter adjustment is developed to solve the proposed optimization problem. This parameter-free advantage enables the whole algorithm more attractive and practical. Experiments demonstrate that the proposed image deblocking algorithm outperforms the current state-of-the-art methods in both the objective quality and the perceptual quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.