Abstract

Symbolic execution extends concrete execution by allowing symbolic input data and then exploring all feasible execution paths. It has been defined and used in the context of many different programming languages and paradigms. A symbolic execution engine is at the heart of many program analysis and transformation techniques, like partial evaluation, test case generation or model checking, to name a few. Despite its relevance, traditional symbolic execution also suffers from several drawbacks. For instance, the search space is usually huge (often infinite) even for the simplest programs. Also, symbolic execution generally computes an overapproximation of the concrete execution space, so that false positives may occur. In this paper, we propose the use of a variant of symbolic execution, called concolic execution, for test case generation in Prolog. Our technique aims at full statement coverage. We argue that this technique computes an underapproximation of the concrete execution space (thus avoiding false positives) and scales up better to medium and large Prolog applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.