Abstract

Coronary artery disease (CAD) is the single leading cause of death worldwide. Advances in treatment and management have significantly improved patient outcomes. On the other hand, although mortality rates have decreased, more people are left with sequelae that require additional treatment and hospitalization. Moreover, patients with severe nonrevascularizable CAD remain with only the option of heart transplantation, which is limited by the shortage of suitable donors. In recent years, cell‐based regenerative therapy has emerged as a possible alternative treatment, with several regenerative medicinal products already in the clinical phase of development and others emerging as competitive preclinical solutions. Recent evidence indicates that pericytes, the mural cells of blood microvessels, represent a promising therapeutic candidate. Pericytes are abundant in the human body, play an active role in angiogenesis, vessel stabilization and blood flow regulation, and possess the capacity to differentiate into multiple cells of the mesenchymal lineage. Moreover, early studies suggest a robustness to hypoxic insult, making them uniquely equipped to withstand the ischemic microenvironment. This review summarizes the rationale behind pericyte‐based cell therapy and the progress that has been made toward its clinical application. We present the different sources of pericytes and the case for harvesting them from tissue leftovers of cardiovascular surgery. We also discuss the healing potential of pericytes in preclinical animal models of myocardial ischemia (MI) and current practices to upgrade the production protocol for translation to the clinic. Standardization of these procedures is of utmost importance, as lack of uniformity in cell manufacturing may influence clinical outcome. Stem Cells 2018;36:1295–1310

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.