Abstract

The conjunctival epithelium plays an important role in ensuring the optical clarity of the cornea by providing lubrication to maintain a smooth, refractive surface, by producing mucins critical for tear film stability and by protecting against mechanical stress and infectious agents. A large number of disorders can lead to scarring of the conjunctiva through chronic conjunctival inflammation. For controlling complications of conjunctival scarring, surgery can be considered. Surgical treatment of symblepharon includes removal of the scar tissue to reestablish the deep fornix. The surgical defect is then covered by the application of a tissue substitute. One obvious limiting factor when using autografts is the size of the defect to be covered, as the amount of healthy conjunctiva is scarce. These limitations have led scientists to develop tissue engineered conjunctival equivalents. A tissue engineered conjunctival epithelial equivalent needs to be easily manipulated surgically, not cause an inflammatory reaction and be biocompatible. This review summarizes the various substrates and membranes that have been used to culture conjunctival epithelial cells during the last three decades. Future avenues for developing tissue engineered conjunctiva are discussed.

Highlights

  • Schepens Eye Research Institute, Massachusetts Eye and Ear/Harvard Medical School, Department of Medical Biochemistry, Oslo University Hospital, Oslo 0424, Norway; Department of Oral Biology, University of Oslo, Oslo 0316, Norway

  • The conjunctival epithelium plays an important role in ensuring the optical clarity of the cornea by providing lubrication to maintain a smooth, refractive surface, and by producing mucins critical for tear film stability [4]

  • In addition to cytokeratin 4 (Ck4) (Figure 1), squamous conjunctival epithelial cells can be identified by Ck13, a binding pair of Ck4 [11]

Read more

Summary

Conjunctiva

Conjunctival epithelium is non-keratinized and is at least two cell layers thick [1]. The squamous cells produce cell membrane-tethered mucins, while the goblet cells secrete the gel-forming mucins, both of which helps to maintain a protective tear film. The superficial surface of the squamous cells are covered by the membrane-tethered mucins mucin-1 (MUC1), mucin-4 (MUC4) and mucin-16 (MUC16) [6], which are essential for tear stability and make up the glycocalyx [6]. The gel-forming mucin-5AC (MUC5AC) and mucin-2 (MUC2) are secreted by goblet cells into the aqueous layer of the tear film [8,9] (Figure 2). The squamous conjunctival cells contribute to the hydration of the ocular surface through ion transport across the apical cell membrane with accompanying osmotic water transfer [5]. In addition to cytokeratin 4 (Ck4) (Figure 1), squamous conjunctival epithelial cells can be identified by Ck13, a binding pair of Ck4 [11]

Conjunctival Stem Cells
Conjunctival Scarring Diseases
Tissue Engineered Conjunctival Equivalents
Biological Membranes
Extracellular Matrix Protein-Containing Membranes
Synthetic Polymer Membranes
Storage and Transportation of Cultured Conjunctival Epithelial Cells
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.