Abstract

Neurodegenerative diseases of the central nervous system (CNS) pose a serious health concern worldwide, with a particular incidence in developed countries as a result of life expectancy increase and the absence of restorative treatments. Presently, treatments for these neurological conditions are focused on managing the symptoms and/or slowing down their progression. As so, the research on novel neuroprotective drugs is of high interest. Glypromate (glycyl-l-prolyl-l-glutamic acid, also known as GPE), an endogenous small peptide widespread in the brain, holds great promise to tackle neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's, s well as other CNS-related disorders like Rett and Down's syndromes. However, the limited pharmacokinetic properties of Glypromate hinder its clinical application. As such, intense research has been devoted to leveraging the pharmacokinetic profile of this neuropeptide. This review aims to offer an updated perspective on Glypromate research by exploring the vast array of chemical derivatizations of more than 100 analogs described in the literature over the past two decades. The collection and discussion of the most relevant structure-activity relationships will hopefully guide the discovery of new Glypromate-based neuroprotective drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.