Abstract

Bit arrays, or bitmaps, are used to significantly speed up set operations in several areas, such as data warehousing, information retrieval, and data mining, to cite a few. However, bitmaps usually use a large storage space, thus requiring compression. Consequently, there is a space–time tradeoff among compression schemes. The Word Aligned Hybrid (WAH) bitmap compression trades some space to allow for bitwise operations without first decompressing bitmaps. WAH has been recognized as the most efficient scheme in terms of computation time. In this paper we present Concise ( Compressed ‘ n’ Composable Integer Set), a new scheme that enjoys significantly better performances than WAH. In particular, when compared to WAH our algorithm is able to reduce the required memory up to 50%, while having comparable computation time. Further, we show that Concise can be efficiently used to represent sets of integral numbers in lieu of well-known data structures such as arrays, lists, hashtables, and self-balancing binary search trees. Extensive experiments over synthetic data show the effectiveness of our proposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.