Abstract
By means of the facile chemistry, structural assembly, and transformation of four mononuclear Dy(III) complexes, Dy(bpad)3·CH3OH·H2O (1), Dy(bpad)2(H2O)2·NO3 (2), [Dy(bpad)2(tmhd)] (3), and [Dy(bpad)2(btfa)] (4) (Hbpad = N3-benzoylpyridine-2-carboxamidrazone, tmhd = 2,2,6,6-tetramethylheptane-3,5-dione, btfa = 3-benzoyl-1,1,1-trifluoroacetone), with distinct architectures and local symmetries were established. The disparity of the coordination geometries around the Dy(III) ion among these complexes impacts the strength of the crystal field and the local tensor of anisotropy ( D) of each Dy site and their relative orientations, therefore giving rise to diverse SIM behaviors with distinguishing relaxation energy barriers of 106.93 K for 1, 52.55 K for 2, 48.16 K for 3, and 51.41 K for 4. The differences of the magnetic property and the magnetic anisotropy for four complexes have been explained by ab initio calculations, which are corresponding to the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.