Abstract

The furan moiety, prevalent in bioactive natural products and essential drugs, presents intriguing structural features that have spurred our exploration into streamlined chemical synthesis routes for related natural products. In this study, we demonstrate the concise total synthesis of eight 2,4-disubstituted furan-derived natural products (including methylfuroic acid, rabdoketones A and B, paleofurans A and B, tournefolin C, and shikonofurans A and B). Our methodology revolves around the utilization of hydroxyoxetanyl ketones as pivotal intermediates. The approach encompasses transformations such as selective organo-catalyzed cross-ketol addition, synthesis of hydroxymethyl-tethered furans through Bi(OTf)3 catalyzed dehydrative cycloisomerization of α-hydroxyoxetanyl ketones, and a hydrogen atom transfer (HAT)-mediated oxidation of primary alcohols into the corresponding acids. This comprehensive synthetic strategy highlights the versatility of hydroxyoxetanyl ketones as invaluable building blocks in the synthesis of furan-containing natural products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call