Abstract

A new framework intended for representing and segmenting multidimensional datasets resulting in low spatial complexity requirements and with appropriate access to their contained information is described. Two steps are going to be taken in account. The first step is to specify (n-1)D hypervoxelizations,n≥2, as Orthogonal Polytopes whosenth dimension corresponds to color intensity. Then, thenD representation is concisely expressed via the Extreme Vertices Model in then-Dimensional Space (nD-EVM). Some examples are presented, which, under our methodology, have storing requirements minor than those demanded by their original hypervoxelizations. In the second step, 1-Dimensional Kohonen Networks (1D-KNs) are applied in order to segment datasets taking in account their geometrical and topological properties providing a non-supervised way to compact even more the proposedn-Dimensional representations. The application of our framework shares compression ratios, for our set of study cases, in the range 5.6496 to 32.4311. Summarizing, the contribution combines the power of thenD-EVM and 1D-KNs by producing very concise datasets’ representations. We argue that the new representations also provide appropriate segmentations by introducing some error functions such that our 1D-KNs classifications are compared against classifications based only in color intensities. Along the work, main properties and algorithms behind thenD-EVM are introduced for the purpose of interrogating the final representations in such a way that it efficiently obtains useful geometrical and topological information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.