Abstract

AbstractSilyl‐triflate‐catalyzed (4+3) cycloadditions of epoxy enolsilanes with dienes provide a mild and chemoselective synthetic route to seven‐membered carbocycles. Epoxy enolsilanes containing a terminal enolsilane and a single stereocenter undergo cycloaddition with almost complete conservation of enantiomeric purity, a finding that argues against the involvement of oxyallyl cation intermediates which have been previously proposed for these types of reactions. Reported are theoretical and experimental investigations of the cycloaddition mechanism. The major enantiomers of the cycloadducts are derived from SN2‐like reactions of the silylated epoxide with the diene, in which stereospecific ring opening and formation of the two new CC bonds occur in a single step. Calculations predict, and experiments confirm, that the observed small losses of enantiomeric purity are traced to a triflate‐mediated double SN2 cycloaddition pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.