Abstract

Conjugation reactions catalyzed by the cytosolic sulfotransferase, SULT1A3, or catechol- O-methyltransferase (COMT) are known to be involved in the regulation and homeostasis of dopamine and other monoamine neurotransmitters. Whether different conjugation reactions may act in a concerted manner, however, remains unclear. The current study aimed to investigate the concerted action of SULT1A3 and COMT in dopamine metabolism. Analysis of the medium of SK-N-MC cells, metabolically labeled with [ 35S]sulfate in the presence of dopamine, revealed the generation and release of predominantly [ 35S]sulfated 3-methyldopamine and, to a lesser extent [ 35S]sulfated dopamine. Addition to the labeling medium of tropolone, a COMT inhibitor, enhanced the production of [ 35S]sulfated dopamine, with a concomitant decrease of [ 35S]sulfated 3-methyldopamine. Enzymatic assays using the eleven known human cytosolic SULTs revealed SULT1A3 as the major enzyme responsible for the sulfation of both dopamine and 3-methyldopamine. Kinetic analysis showed that the catalytic efficiency of SULT1A3 with 3-methyldopamine was 1.6 times than that with dopamine. Using subcellular fractions prepared from SK-N-MC cells, the majority of COMT dopamine-methylating activity was found to be present in the cytosol. Collectively, these results imply a concerted action of sulfation and methylation in the irreversible inactivation and disposal of excess dopamine in SK-N-MC cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.