Abstract

Adhesion of bone cells to the extracellular matrix is a crucial requirement for osteoblastic development and function. Adhesion receptors connect the extracellular matrix with the cyto-skeleton and convey matrix deformation into the cell. We tested the hypothesis that sex hormones modulate mechanoperception of human osteoblastic cells (HOB) by affecting expression of adhesion molecules like fibronectin and the fibronectin receptor. Only dihydrotestosterone (DHT), but not 17β-estradiol, stimulated fibronectin (137%) and fibronectin receptor (252%) protein expression. The effects of deformation strain on HOB metabolism were investigated in a FlexerCell® strain unit. Cyclically applied strain (2.5% elongation) increased DNA synthesis (125%) and interleukin-6 (IL-6) production (170%) without significantly affecting alkaline phosphatase (AP) activity, type I collagen (PICP), or osteoprotegerin (OPG) secretion. 10 nM DHT pretreatment abolished the mitogenic response of HOB to strain and increased AP activity (119%), PICP (163%), and OPG production (204%). In conclusion, mechanical strain stimulates bone remodeling by increasing HOB mitosis and IL-6 production. DHT enhances the osteoanabolic impact of deformation strain by increasing bone formation via increased AP activity and PICP production. At the same time, bone resorption is inhibited by decreased IL-6 and increased OPG secretion into the bone microenvironment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.