Abstract

We use Toponogov’s triangle comparison theorem from Riemannian geometry along with quantitative scale oriented variants of classical propagation of singularities arguments to obtain logarithmic improvements of the Kakeya–Nikodym norms introduced in [22] for manifolds of nonpositive sectional curvature. Using these and results from our paper [4] we are able to obtain log-improvements of $L^p (M)$ estimates for such manifolds when $2 \lt p \lt \frac{2(n+1)}{n-1}$. These in turn imply $(\log \lambda)^{\sigma_n} , \sigma_n \approx n$, improved lower bounds for $L^1$-norms of eigenfunctions of the estimates of the second author and Zelditch [28], and using a result from Hezari and the second author [18], under this curvature assumption, we are able to improve the lower bounds for the size of nodal sets of Colding and Minicozzi [12] by a factor of $(\log \lambda)^{\mu}$ for any $\mu \lt \frac{2(n+1)^2}{n-1}$, if $n \geq 3$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.