Abstract

A cyclic Steiner triple system, presented additively over Zv as a set B of starter blocks, has a non-trivial multiplier automorphism λ ≠ 1 when λB is a set of starter blocks for the same Steiner triple system. When does a cyclic Steiner triple system of order v having a nontrivial multiplier automorphism exist? Constructions are developed for such systems; of most interest, a novel extension of Netto's classical construction for prime orders congruent to 1 (mod 6) to prime powers is proved. Nonexistence results are then established, particularly in the cases when v = (2β + 1)α, when v = 9p with p ≡ 5 (mod 6), and in certain cases when all prime divisors are congruent to 5 (mod 6). Finally, a complete solution is given for all v < 1000, in which the remaining cases are produced by simple computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.