Abstract

A conceptual-stochastic approach to short time runoff data modelling is proposed, according to the aim of reproducing the hydrological aspects of the streamflow process and of preserving as much as possible the dynamics of the process itself. This latter task implies preservation of streamflow characteristics at higher scales of aggregation and, within a conceptual framework, involves compatibility with models proposed for the runoff process at those scales. At a daily time scale the watershed response to the effective rainfall is considered as deriving from the response of three linear reservoirs, respectively representing contributions to streamflows of large deep aquifers, with over-year response lag, of aquifers which run dry by the end of the dry season and of subsurface runoff. The surface runoff component is regarded as an uncorrelated point process. Considering the occurrences of effective rainfall events as generated by an independent Poisson process, the output of the linear system represents a conceptually-based multiple shot noise process. Model identification and parameter estimation are supported by information related to the aggregated runoff process, in agreement to the conceptual framework proposed, and this allows parameter parsimony, efficient estimation and effectiveness of the streamflow reproduction. Good performances emerged from the model application and testing made with reference to some daily runoff series from Italian basins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.