Abstract

Recent years have seen the emergence of physical products that are digitally networked with other products and with information systems to enable complex business scenarios in manufacturing, mobility, or healthcare. These “smart products”, which enable the co-creation of “smart service” that is based on monitoring, optimization, remote control, and autonomous adaptation of products, profoundly transform service systems into what we call “smart service systems”. In a multi-method study that includes conceptual research and qualitative data from in-depth interviews, we conceptualize “smart service” and “smart service systems” based on using smart products as boundary objects that integrate service consumers’ and service providers’ resources and activities. Smart products allow both actors to retrieve and to analyze aggregated field evidence and to adapt service systems based on contextual data. We discuss the implications that the introduction of smart service systems have for foundational concepts of service science and conclude that smart service systems are characterized by technology-mediated, continuous, and routinized interactions.

Highlights

  • Imagine that you own a smart washing machine

  • Based on the identified properties of smart products and service systems and based on the foundational premises of service science, we argue that smart products mediate interactions between service providers and service consumers in two ways: when consumers use the products' embedded functionality as a self-service, and when service providers use a smart product to connect remotely to the operations the service's consumer performs

  • In smart service systems, smart products take the role of boundary objects—artifacts that reside at the interfaces between roles or those between communities and facilitate the transfer of cross-boundary information and knowledge (Carlile 2002; Star and Griesemer 1989; Star 2010; Becker et al 2013b)

Read more

Summary

Introduction

Your machine’s primary purpose is to do the laundry, but it is equipped with various sensors that determine the weight of your laundry, judge the quality of the water, and identify the properties (e.g., material, color, dirtiness) of your laundry. Based on these data, the machine autonomously applies just the right amounts of washing powder, water, and electricity; reducing its environmental footprint and saving money. This machine offers a dry-cleaning service that is tailored to your own idiosyncratic needs, perhaps increasing your willingness-to-pay for the machine

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call