Abstract
Airborne wind turbines (AWTs) represent a radically new and fascinating concept for future harnessing of wind power. This concept consists of realizing only the blades of a conventional wind turbine (CWT) in the form of a power kite flying at high speed perpendicular to the wind. On the kite are mounted a turbine, an electrical generator, and a power electronics converter. The electric power generated is transmitted via a medium voltage cable to the ground. Because of the high flight speed of the power kite, several times the actual wind speed, only a very small swept area of the turbine is required according to Betz's Law and/or a turbine of low weight for the generation of a given electric power. Moreover, because of the high turbine rotational speed, no gear transmission is necessary and the size of the generator is also reduced. For takeoff and landing of the power kite, the turbines act as propellers and the generators as motors, i.e., electric power is supplied so that the system can be maneuvered like a helicopter. In the present work, the configuration of power electronics converters for the implementation of a 100 kW AWT is considered. The major aspect here is the trade-off between power-to-weight ratio (W/kg) and efficiency. The dependence of cable weight and cable losses on the voltage level of power transmission is investigated, and a comparison is made between low voltage (LV) and medium voltage (MV) versions of generators. Furthermore, the interdependence of the weight and efficiency of a bidirectional dual active bridge dc-dc converter for coupling the rectified output voltage of a LV generator to the MV cable is discussed. On the basis of this discussion, the concept offering the best possible compromise of weight and efficiency in the power electronics system is selected and a model of the control behavior is derived for both the power flow directions. A control structure is then proposed and dimensioned. Furthermore, questions of electromagnetic compatibility and electrical safety are treated. In conclusion, the essential results of this paper are summarized, and an outlook on future research is given. To enable the reader to make simplified calculations and a comparison of a CWT with an AWT, the aerodynamic fundamentals of both the systems are summarized in highly simplified form in an Appendix, and numerical values are given for the 100 kW system discussed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.