Abstract
Computational models using text corpora have proved useful in understanding the nature of language and human concepts. One appeal of this work is that text, such as from newspaper articles, should reflect human behaviour and conceptual organization outside the laboratory. However, texts do not directly reflect human activity, but instead serve a communicative function and are highly curated or edited to suit an audience. Here, we apply methods devised for text to a data source that directly reflects thousands of individuals’ activity patterns. Using product co-occurrence data from nearly 1.3-m supermarket shopping baskets, we trained a topic model to learn 25 high-level concepts (or topics). These topics were found to be comprehensible and coherent by both retail experts and consumers. The topics indicated that human concepts are primarily organized around goals and interactions (e.g. tomatoes go well with vegetables in a salad), rather than their intrinsic features (e.g. defining a tomato by the fact that it has seeds and is fleshy). These results are consistent with the notion that human conceptual knowledge is tailored to support action. Individual differences in the topics sampled predicted basic demographic characteristics. Our findings suggest that human activity patterns can reveal conceptual organization and may give rise to it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.