Abstract

Fiber-reinforced polymer (FRP) retrofit systems for concrete structural members such as beams, columns, slabs, and bridge decks have become increasingly popular as a result of extensive studies on short-term debonding behavior. Nevertheless, long-term performance and durability issues regarding debonding behavior in such strengthening systems still remain largely uncertain and unanswered. Because of its composite nature, the effectiveness of the strengthening system depends on the properties of the interfaces between the three constituent materials; namely, concrete, epoxy, and FRP. Certain factors, including those related to environmental exposures, can cause degradation of the interface properties during service life. This is particularly critical when predicting service life and planning maintenance of FRP-strengthened concrete structures. In this study, effect of moisture on an FRP-concrete bond system is characterized by means of the tri-layer fracture toughness, which can be obtained experimentally from peel and shear fracture tests. Fracture specimens were conditioned under various durations and numbers of wet-dry cycles at room temperature and 50°C. An irreversible weakening in bond strength was observed in fracture specimens under moisture cyclic condition. A conceptual model is developed based on the experimental results of the fracture specimens under variable cyclic moisture conditions for the bond strength prediction of the FRP-concrete bond system. A numerical study of a precracked FRP-strengthened reinforced concrete beam is then performed to show potential application of the proposed predictive model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.