Abstract

The goal of this article was to generate a method of regional scale ecological risk assessment using an adaptation Relative Risk Model (RRM). As a case study we performed a quantitative, regional risk assessment of an invasive species, the European green crab (Carcinus maenas) at Cherry Point, Washington, USA. The conceptual model was modified from the RRM and incorporates the structure of the hierarchical patch dynamic paradigm. The ranks and filters were integrated to determine the relative contribution of each source of C. maenas to risk as well as the risk to selected biological endpoints, habitats and sub-regions for two source scenarios: (1) current conditions (2004) and (2) future conditions during an El Nino year. The results suggest that the habitat and endpoint with the greatest risk are the eelgrass habitat and the juvenile Dungeness crab, respectively. The Cherry Point subregion was identified as the area having the most risk in the first source scenario, while the Lummi Bay sub-region is most at risk during an El Nino event. The risk of impacts is substantially higher for all endpoints, habitats and sub-regions when El Nino–driven current dispersal is considered. The methodology applied in this case study can be modified and applied to determine the risk of introduction and impacts of other invasive species to the Strait of Georgia, Puget Sound, and other coastal areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call