Abstract
Understanding the conceptual resources that children bring to mathematics learning is crucial for developing effective instruction and interventions. Despite the considerable number of studies examining the neural underpinnings of number representations in adults and the growing number of reports in children, very few studies have examined the neural correlates of the link between foundational resources related to numerical information and symbolic number representations in infants. There is currently an active debate about which foundational resources are critical for symbolic mathematics. Is early numerical discrimination best explained by a holistic and generalized sense of magnitude rather than a number sense? Does early number sense provide the conceptual basis for mapping numerical symbols to their meaning? Are foundational number systems marginal while children learn to count and perform symbolic arithmetic, and only later children map non symbolic representations of numerical magnitudes onto symbols? After describing the mainstream theories of numerical cognition and the sources of controversy, we review recent studies of the neural bases of human infants' numerical performance with the aim of clarifying the link between early conceptual resources and symbolic number systems as children's mathematical minds develop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.