Abstract
In this paper, the conceptual design of the International Thermonuclear Experimental Reactor (ITER) Water-Cooled Lithium-Lead (WCLL) Test Blanket Module (TBM) Water Cooling System (WCS) from Europe is presented. The system consists of two loops in series. This design feature allows the removal of heat from the TBM box avoiding at the same time the release of radionuclides into the ITER Component Cooling Water System (CCWS), that acts as WCLL Test Blanket System heat sink. For this purpose, the WCS primary loop deals with the direct heat removal from the ITER TBM and the secondary one implements physical separation between the contaminated primary loop coolant and the CCWS. The insertion of an economizer into the primary loop determines the characteristic “eight” shape of the circuit. This choice was done in order to reduce the temperature difference on the intermediate heat exchanger. Hairpin type and steam bubble are the technologies selected for heat exchangers and pressurizers, respectively. Pressure and temperature control systems are foreseen to limit excursions from rated values in normal operational states and abnormal transients.A computational activity was promoted to assess the WCLL-WCS conceptual design, using a modified version of the RELAP5 Mod3.3 system code. A detailed thermal-hydraulic model was developed on the basis of design outcomes. The nodalization scheme includes the TBM, the WCS, a portion of the CCWS and the lithium-lead circuit. The computational campaign involved both the normal operational state and selected abnormal transients. In all the scenarios simulated, the conceptual design has highlighted the capability of operating the system respecting all the thermal-hydraulic requirements. The abnormal transient selected and presented is the loss of flow in the CCWS (loss of heat sink). In these conditions, TBM cooling function has been verified, keeping standard control strategies without any external action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.