Abstract

AbstractMany cities have announced ambitious plans to introduce zero-emission electric bus systems. The transformation process to electric bus systems opens up a vast design space as different charging strategies, charging technologies and battery types are available. Therefore, a profound assessment strategy is necessary to find a “most suitable system solution” under given strategic and operational requirements.In this study, we present a new methodology for conceptual design of urban electric bus systems. First, the available e-bus technologies are analysed with a special focus on charging systems, battery technology and aging. Relational functional analysis is used to derive a suitable simulation model. Based on the operational requirements, an energetic simulation of the e-bus is carried out, and the required battery capacity is obtained. Subsequently, the design space is reduced by applying a qualitative cost- technology compatibility matrix taking cost and battery aging into account. The applicability of the model is shown for an exemplary realistic operational scenario to identify three most expedient concepts, which are finally validated with an in-depth analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call