Abstract

AbstractThis paper highlights unmanned aerial vehicle (UAV) conceptual design using the multi-objective genetic algorithm (MOGA). The design problem is formulated as a multidisciplinary design optimisation (MDO) problem by coupling aerodynamic and structural analysis. The UAV considered in this paper is a low speed, long endurance aircraft. The optimisation problem uses endurance maximization and wing weight minimisation as dual objective functions. In this multi-objective optimisation, aspect ratio, wing loading, taper ratio, thickness-to-chord ratio, loiter velocity and loiter altitude are considered as design variables with stall speed, maximum speed and rate of climb as constraints. The MDO system integrates the aircraft design code, RDS and an empirical relation for objective function evaluation. In this study, the optimisation problem is solved in two approaches. In the first approach, the RDS code is directly integrated in the optimisation loop. In the second approach, Kriging model is employed. The second approach is fast and efficient as the meta-model reduces the time of computation. A relatively new multi-objective evolutionary algorithm named NSGA-II (non-dominated sorting genetic algorithm) is used to capture the full Pareto front for the dual objective problem. As a result of optimisation using multi-objective genetic algorithm, several non-dominated solutions indicating number of useful Pareto optimal designs is identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.