Abstract
A high resolution neutron spectrometer (HRNS) system has been designed as a neutron diagnostic tool for ITER. The HRNS is dedicated to measurements of time resolved neutron energy spectra for both deuterium and deuterium–tritium (DT) plasmas. The main function of the HRNS is to determine the fuel ion ratio nt/nd in the plasma core with 20% uncertainty and a time resolution of 100 ms for a range of ITER operating scenarios from 0.5 MW to 500 MW in fusion power. Moreover, neutron spectroscopy measurements should also be possible in the initial deuterium phase of ITER experiments. A supplementary function of the HRNS is to provide information on the fuel ion temperature. Furthermore, the HRNS can be used as an additional line-of-sight (LOS) for the radial neutron camera. To meet these requirements, a set of four spectrometers positioned after each other along a single LOS has been designed. The detector techniques employed include a thin foil proton recoil spectrometer (TPR), a neutron diamond detector (NDD), a back-scattering time-of-flight system (bToF) and a forward time-of-flight system (fToF). The TPR system, positioned closest to the plasma, provides data at high fusion powers. For plasma conditions producing intermediate fusion power two neutron spectrometers are installed: NDD and bToF. The NDD is installed as the second instrument along the HRNS LOS after the TPR. The fToF spectrometer is dedicated for low tritium densities and pure deuterium operation.The paper summarizes the current state of the art of neutron spectroscopy useful in plasma diagnostics and the possibility of installing a dedicated HRNS for ITER in the designated diagnostic port. We conclude that the proposed HRNS system can fulfil the ITER measurement requirements over a broad range of plasma operational scenarios, including full power DT, start-up, ramp-down and pure D operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.