Abstract

Three new in-vessel manipulators are designed and built for the new COMPASS Upgrade tokamak with uniquely high vessel temperature (250–500 °C) and heat flux density (perpendicular to divertor surface q ⊥ ∼ 80 MW/m2 and q ∥ ∼ GW/m2 at separatrix), which challenges the edge plasma diagnostics. Here we show their detailed engineering designs supported by heat conduction and mechanical models. Deep reciprocation of electrostatic probes near the separatrix should be possible by optimizing older concepts in (a) the head and probe geometry, (b) strongly increasing the deceleration up to 100× gravity by springs and strengthening the manipulator mechanical structure. One reciprocates close to the region of edge plasma influx (the outer midplane), the other at the plasma sink (between the outer divertor strike point and X-point), for studying the plasma divertor (impurity-seeded) detachment and liquid metal vapor transport. Both probe heads are equipped with a set of ball-pen and Langmuir probes, measuring reliably and extremely fast (10−6 s) local (1 mm resolution) plasma potential, density, electron temperature and heat flux and even ion temperature with 10−5 s resolution. The divertor manipulator (without reciprocation) will place various material test targets at the outer divertor. Unique will be its capability to increase 15× the surface heat flux with respect to the surrounding tungsten tiles just by controllable surface inclination of the test targets. We plan to test liquid metal targets where such inclined surface was found critical to achieve the desired mode with lithium vapor shielding. Even in the conservative expected performance of COMPASS Upgrade, we predict to reach and survive the EU DEMO relevant heat fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.