Abstract

The offshore wind sector is mature and has led to standardized design methods for offshore substructures. The conceptual design phase is critical for efficiency and cost-effectiveness and forms the basis for further design iterations. As turbine capacity increases, so does the complexity of offshore substructures, making design more challenging. However, the design process still relies on the expertise of the design engineers. These engineers rely heavily on their experience and intuition when designing, which can lead to biases due to limited information. To address this problem, Machine Learning (ML) techniques offer a promising way to improve the accuracy and efficiency of the conceptual design of offshore substructures. The current study is limited to the conceptual design of jacket substructures and was conducted on a self-developed global dataset of real jackets. The ML-based approach proposed in this study is capable of learning from existing data, recognizing intricate relationships between design variables, and potentially providing more accurate estimates for the initial conceptual design of offshore jacket substructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.