Abstract
Electron density measurement remains indispensable to control fueling on a DEMO reactor. For steady-state operation of the DEMO reactor, density measurement should be highly reliable and accurate. A dispersion interferometer and a Faraday polarimeter are free from measurement errors caused by mechanical vibrations. Hence combination of the two diagnostics yields a suitable system for density measurement on future steady-state fusion reactors. A wavelength around 1 µm is one of the desirable candidates in terms of the fringe shift and the Faraday rotation angle, the variety of optical components, and the efficiency of frequency doubling for the dispersion interferometer. This paper presents a conceptual design for the dispersion interferometer and Faraday polarimeter with a 1 µm light source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.