Abstract

ABSTRACTConductive heat transfer plays an important role in dissipating thermal energy to achieve lower operating temperatures in various devices. Topology optimization has the potential to provide efficient structural solutions for such devices. The traditional topology optimization approach considers a single material. Adding additional materials with unique properties not only can expand the design options but also may improve the structural performance of the final structure. In this work, a multi-resolution topology optimization approach is employed to design multi-material structures for efficient heat dissipation. The implementation blends an efficient multi-resolution approach to obtain high-resolution designs with an alternating active phase algorithm to handle multi-material giving greater design flexibility. It solves the steady-state heat equation using finite element analysis and iteratively minimizes thermal compliance (maximizes conductivity). Several examples are presented to show the efficacy of the numerical implementation, which involves benchmark problems. Results indicate good prospects when quantitatively compared with single-material structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call