Abstract

Fuel rod design for high power density supercritical water-cooled fast reactor was conducted with mixed-oxide (MOX) fuel and stainless steel (SUS304) cladding under the limiting cladding surface temperature of 650 °C. Fuel and cladding integrities, and flow-induced vibration were taken into account as design criteria. Designed fuel rod has the diameter of 7.6 mm and is arranged in the fuel assembly with pitch-to-diameter ratio of 1.14. New core arrangement for negative void reactivity is proposed by three-dimensional tri-z core calculation fully coupled with thermal hydraulic calculation, where ZrH layer concept is used for negative void reactivity. The core has high power density of 156 W/cm 3 and its equivalent diameter is only 2.7 m for 1000 MWe class reactor core. High average core outlet temperature of 500 °C is achieved by introducing radial fuel enrichment zoning and downward flow in seed assembly. Small pressure vessel size and simplified direct steam cycle with higher thermal efficiency give an economical potential in aspect of capital and operating cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.