Abstract

In flexible automation approach to batch or job-shop production the main emphasis has always been on the re-programmability of the elements of a manufacturing system. The assumption that lies behind this philosophy is that “system flexibility” can be achieved through (mainly) software flexibility and limited hardware flexibility. Modular robots introduce a new dimension to flexible automation in terms of hardware flexibility, when compared to conventional industrial robots, in terms of yielding individual global optimal arm geometries for each of the tasks at hand. The objective of our ongoing research in the area of “mechanical design of modular robots” is to develop an inventory of basic modular units, which will allow a user to configure the most suitable robot geometry for a task (or a set of tasks) at hand. Standardization of these units and minimization of the size of the inventory constitute the two main goals of this research. In this paper some of our research results on the conceptual design of a modular robot are presented. The individual modular robot units that are presented include: one degree-of-freedom (dof) main joints (rotary and prismatic types), one dof end effector joints (Yaw, Pitch and Roll types), links and connectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.