Abstract

One of the most widespread global challenges is the insufficient provision of potable water, which affects individuals across diverse geographical regions. It is anticipated that issues related to water scarcity and quality will escalate in tandem with the expanding human population and the rapid pace of global development. Water sources are massively polluted hence, not safe for drinking nor irrigation. As a consequence, it is very important to have a water purification treatment plant to provide good water quality. Given the pressing need to ensure universal access to safe and clean drinking water, this investigation aims to engineer a compact and space-efficient apparatus that can expeditiously produce purified water. The proposed system seeks to optimize water purification performance while minimizing spatial requirements and operational duration. Its size is minimized by combining the three processes: coagulation, flocculation, and clarification together in one tank. Following to the aforementioned reservoir, an integrated natural system is employed to reduce the usage of chemicals and establish an ecologically sustainable platform. A hydraulic study is conducted to obtain the dimensioning of the several units which can be later scaled according to the flowrate. The latter was assumed in this study to be 2 L/s, then the compact unit can serve up to 800 persons by scaling the model and adjusting it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call