Abstract

AbstractIn recent years, the air transport market has quickly grown, creating new civil aircrafts demand, challenging the actual production rate of aerospace industries. The bottleneck of the current civil aircrafts production rate lies in the capability of the manufacturing and assembly facilities in relation to the aircrafts architecture design.The aim of this work is to develop a methodology and a related mathematical model that can be used at the conceptual design phase for the assessment of criticalities related to the product assemblability. The methodology allows to recognize modules and/or interfaces which are mostly affecting the assembly time providing a design tool for the comparison and evaluation of product architecture alternatives.A preliminary application has been done on the nose-fuselage of a civil aircraft for passenger transport. The test case provides interesting outcome in the identification of modules and module interfaces which are strongly affecting the assembly phase and required a re-arrangement (new architecture design) for the process improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.