Abstract

A study was made to examine the conceptual feasibility of a molten-salt power reactor fueled with denatured /sup 235/U and operated with a minimum of chemical processing. Because such a reactor would not have a positive breeding gain, reductions in the fuel conversion ratio were allowed in the design to achieve other potentially favorable characteristics for the reactor. A conceptual core design was developed in which the power density was low enough to allow a 30-year life expectancy of the moderator graphite with a fluence limit of 3 x 10/sup 26/ neutrons/m/sup 2/ (E > 50 keV). This reactor could be made critical with about 3450 kg of 20% enriched /sup 235/U and operated for 30 years with routine additions of denatured /sup 235/U and no chemical processing for removal of fission products. A review of the chemical considerations assoicated with the conceptual fuel cycle indicates that no substantial difficulties would be expected if the soluble fission products and higher actinides were allowed to remain in the fuel salt for the life of the plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call