Abstract

A numerical model has been developed for the performance analysis of solid oxide fuel cell (SOFC)/micro gas turbine (MGT) hybrid systems with prereforming of natural gas, in which a quasi two-dimensional model has been built up to simulate the cell electrochemical reaction, heat and mass transfer within tubular SOFC. The developed model can be used not only to predict the overall performance of the SOFC/MGT hybrid system but also to reveal the nonuniform temperature distribution within SOFC unit. The effects of turbine inlet temperature (TIT) and pressure ratio (PR) on the performance of the hybrid system have been investigated. The results show that selecting smaller TIT or PR value will lead to relative higher system efficiency and lower CO2 emission ratio; however, this will raise the risk to destroy SOFC beyond the limitation temperature of electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.