Abstract

A regional, turbofan-powered, 72-passenger, transport aircraft with very high aspect ratio truss-braced wings is developed with an affordable methodology from an existing 52 passenger, conventional twin-turboprop aircraft. At first, the ration behind the selection of the truss-braced wing configuration is discussed. Next, the methodologies for the sizing, weight, aerodynamics, performance, and cost analysis are presented and validated against existing regional aircraft. The variant configurations and their design features are then discussed. Finally, sensitivity analysis is carried out to investigate the effects of the wing aspect ratio and engine bypass ratio on the aircraft weight, aerodynamics, and cost. It has been found that the penalties associated with the wing weight will prevent the acceptable realization of the high aspect ratio wing benefits, but when it is combined with the very high bypass ratio engines, a 17% reduction in the mission fuel weight is achieved. In contrast, the cost analysis has revealed that the application of higher aspect ratio wings in the truss-braced wing configuration may increase the development and maintenance costs. Consequently, with aspect ratios higher than 24, eventually, these costs may outperform the associated fuel cost reductions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call