Abstract

A novel integrated system, including air separation unit (ASU), coal gasification, solid oxide fuel cell (SOFC), carbon dioxide (CO2) transcritical cycle, steam cycle with liquefied natural gas (LNG) vaporization is configured and analyzed. ASU provides the required oxygen for SOFC and oxy-fuel power generation system. Coal gasification provides syngas which is utilized as a part of the essential heat source. Electrical power is generated by SOFC, steam and CO2 oxy-fuel cycles. LNG is vaporized to provide the cold energy and also is utilized as the fuel in the SOFC and CO2 oxy fuel cycles. Sensitivity of the process performance to the major operating parameters is studied. Effect of the LNG flow rate, turbine inlet temperature (TIT), CO2 oxy-fuel cycle pressure ratio and SOFC operating parameters are investigated. The obtained results indicate that the net electrical power is 5.97 × 105 kW, in the condition that TIT = 900 °C, rp,c = 28, Vcell = 0.85 and Uf = 0.8. In this process rate of the utilized LNG is 1.10 × 108 kg.h−1 and rate of the captured CO2 is 1.03 × 104 kg.h−1. Also 1.36 × 107 kg h−1 syngas, 1.38 × 107 kg.h−1 liquid oxygen (LO2), 3.37 × 107 kg.h−1 liquid nitrogen (LN2) and 1.00 × 108 kg.h−1 NG are produced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call