Abstract
This work describes a range of issues relating to the implementation of active control for noise and vibration problems. It is important in the commercialization of this technology to consider these and many other factors relating to design of these systems. Many of the concepts required for efficient implementation have not been considered and it is important to begin giving design consideration to these aspects. A design technique based upon the eigenbehavior of feedforward controlled systems is developed and applied to control radiation from structures. Integration of the control system with the physical system dynamics allows the eigenproperties to be defined to meet a prescribed design criteria. Here the technique is demonstrated to implement a structural system that inefficiently couples vibration energy to acoustic energy. In addition, an approach to integrate “knowledge” about actuator configurations into an active control system that reduces spillover effects into structural vibrations is demonstrated. This approach has the advantages that no additional hardware is required while also reducing the order of the control system in terms of degrees of freedom. Finally, some design trade-offs between the passive material properties of an active trim panel and control system performance are examined. Improved performance can be attained but at the cost of additional weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.