Abstract

The effective dissolution of refractory plutonium oxide (fired to T ≥ 1000°C) can be carried out by forming ceric nitrate in nitric acid. Preliminary engineering concepts are presented for dissolving such actinide species in the presence of contaminated high-efficiency particulate air (HEPA) filters and incinerator ashes to permit actinide recovery using conventional wet methods. An electrochemical oxidation tank is envisioned with electrodes mounted on the tank lid to facilitate remote operation and maintenance. Contaminated HEPA filters can be treated using an upflow reactor in which ceric nitrate is recirculated between an oxidation tank and a reactor. A membrane separating the electrodes is not required, but special materials of construction are required for all equipment in direct contact with ceric nitrate (e.g., titanium or glass-lined vessels). Since this oxidant is easily reduced to cerous nitrate using oxalic acid, subsequent actinide recovery can be carried out in conventional stainless steel equipment after reduction. The concepts described have been demonstrated on the bench scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.